Use link on website to print the blank graphs!

\#1-6: Carefully sketch the 6 trig functions.

\#7-16: Given that $-2 \pi \leq x \leq 2 \pi$, find the values of x that make each statement true.
7. $\sin x=0$
9. $\cos x=0$
11. $\tan x=-1$
13. $\sec x=$ undefined
15. $\csc x=-1$
8. $\sin ^{-1}(1)$
10. $\arccos (1)$
12. $\arctan (0)$
14. $\tan ^{-1}(1)$
16. $\cot x=0$

Quiz yourself...see if you can sketch the graphs

 without looking at previous handouts!1. $\mathrm{y}=\sin x$

2. $\mathrm{y}=\csc \boldsymbol{x}$

3. $y=\cos x$

4. $y=\sec x$

5. $y=\tan x$

6. $y=\cot x$

Keep scrolling for graph keys and principal values!

1. $y=\sin x$

2. $\mathrm{y}=\csc x$

3. $\mathrm{y}=\cos x$

4. $y=\sec x$

5. $\mathrm{y}=\tan x$

6. $y=\cot x$

$y=\tan x$

More values for the tangent graph...know how to identify them for the group quiz and unit test.

Reminder: find ALL solutions for the given interval.

\#7-16: Given that $-2 \pi \leq x \leq 2 \pi$, find the values of x that make each statement true.

11. $\tan x=-1$
13. $\sec x=$ undefined
15. $\csc x=-1$
12. $\arctan (0)$
14. $\tan ^{-1}(1)$
16. $\cot \mathrm{x}=0$

CHECK YOUR ANSWERS!!!

$$
\begin{array}{ll}
\text { 7. }-2 \pi,-\pi, 0, \pi, 2 \pi & \text { 8. } \frac{-3 \pi}{2}, \frac{\pi}{2}
\end{array}
$$

$$
\text { 9. } \frac{-3 \pi}{2}, \frac{-\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}
$$

$$
\text { 10. }-2 \pi, 0,2 \pi
$$

11. $\frac{-5 \pi}{4}, \frac{-\pi}{4}, \frac{3 \pi}{4}, \frac{7 \pi}{4}$
12. $-2 \pi,-\pi, 0, \pi, 2 \pi$
13. $\frac{-3 \pi}{2}, \frac{-\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}$
14. $\frac{-7 \pi}{4}, \frac{-3 \pi}{4}, \frac{\pi}{4}, \frac{5 \pi}{4}$
15. $\frac{-\pi}{2}, \frac{3 \pi}{2}$
16. $\frac{-3 \pi}{2}, \frac{-\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}$

Reminder for today's bookwork!!

NOTES: 6.4 Solving for angles using inverses

Principal values create a unique (one) solution: $\sin \theta$ and $\tan \theta \rightarrow$ Quadrant I (+) Quadrant IV (-)
$\cos \theta \rightarrow$ Quadrant I (+)
Quadrant II (-)

Highlight Principal Values for today's book work

$$
y=\sin x
$$

$$
-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}
$$

Quadrants I and IV
$y=\cos x$

$0 \leq x \leq \pi$
Quadrants I and II
$y=\tan x$

$-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$
Quadrants I and IV

$$
\text { To solve } 5.5 \text { \#4, 6, 8-10, 43-48 }
$$

ONLY use values from the green highlighted regions in order to have a unique solution.

There are multiple solutions for \#7-16 since you are given the interval from -2π to 2π

Check answers: warm up \#7-16
$\begin{array}{lllllllllllll}-2 \pi & -2 \pi & -2 \pi & -\pi & -\pi & 0 & 0 & 0 & \pi & \pi & 2 \pi & 2 \pi & 2 \pi\end{array}$
$-\frac{3 \pi}{2} \quad-\frac{3 \pi}{2} \quad-\frac{3 \pi}{2} \quad-\frac{3 \pi}{2} \quad-\frac{\pi}{2} \quad-\frac{\pi}{2} \quad-\frac{\pi}{2} \quad-\frac{\pi}{2}$
$\begin{array}{llllllll}\frac{\pi}{2} & \frac{\pi}{2} & \frac{\pi}{2} & \frac{\pi}{2} & \frac{3 \pi}{2} & \frac{3 \pi}{2} & \frac{3 \pi}{2} & \frac{3 \pi}{2}\end{array}$
$-\frac{7 \pi}{4} \quad-\frac{5 \pi}{4} \quad-\frac{3 \pi}{4} \quad-\frac{\pi}{4} \quad \frac{\pi}{4} \quad \frac{3 \pi}{4} \quad \frac{5 \pi}{4} \quad \frac{7 \pi}{4}$

5.5 \#4,6, 8-10, 43-48

\rightarrow use principal values
(see notes 6.4 and unit circle ws \#1-50)
Principal values are used so there is only one unique solution. $\sin x, \tan x \rightarrow$ Quadrants I and IV
$\cos x \rightarrow$ Quadrants I and II
CHECK ANSWERS (evens \& odds included)

$$
\begin{aligned}
& \text { undefined } \\
& \frac{-\sqrt{3}}{2} \quad \frac{-\sqrt{2}}{2} \quad \frac{\sqrt{3}}{3} \quad \frac{1}{2} \quad \frac{-\pi}{2} \text { (same as } \frac{3 \pi}{2} \text {) } \\
& \frac{-\pi}{3} \text { (same as } \frac{5 \pi}{3} \text {) } \quad \frac{-\pi}{4} \text { (same as } \frac{7 \pi}{4} \text {) } \\
& \frac{-\pi}{6} \text { (same as } \frac{11 \pi}{6} \text {) } \quad \frac{-\pi}{6} \text { (same as } \frac{11 \pi}{6} \text {) } \\
& \begin{array}{llllll}
\frac{\pi}{2} & \frac{\pi}{4} & \frac{\pi}{4} & \frac{\pi}{4} & \frac{2 \pi}{3} & \frac{3 \pi}{4}
\end{array}
\end{aligned}
$$

\leftarrow The book is expecting one unique solution so you must use principal values!
$y=\sin x$

$y=\tan x$

$\cos x\} 0^{\circ} \leq x \leq \pi \quad$ Quadrants I,II

$\pi \xrightarrow{\substack{\operatorname{sinx}=+\cos x=-\operatorname{tanx}=-}}$| $\substack{\operatorname{sinx}=+\cos x=+\operatorname{tanx}=+}$ |
| :---: | Principal Values

